Land Value Uplift Effects from an Incremental Transport Network Upgrade

Ben Smith; University of Auckland, NZ Transport Agency

Disclaimer

The research associated with this presentation was conducted in my own time, and in fulfilment of post-graduate studies at the University of Auckland.

Any errors or omissions are my own, and any views expressed do not constitute policy positions of the NZ Transport Agency.

Research Aims

Primary:

• Estimate the land value uplift effects of electrification of Auckland's rail network.

Secondary:

- Develop a hedonic regression model that is:
 - Simple
 - Estimated on land value
 - Based on observed characteristics of properties
 - Robust to missing data

Auckland's Electrified Rail Network

Theory: Bid Rent Curve

Model

• Panel data, difference-in-difference estimation with random effects

In *Residual Land Valu*e_{it} = $\alpha_i + \beta$ *Station Dummy*_{it} + γ *Property Attributes*_{it} + ε_{it}

• Land value estimation

Residual Land Value_{it} = Gross Sale Price_{it} - $IV_{it-n} * \frac{RBNZ House Price Index_t}{RBNZ House Price Index_{t-n}}$

Data Highlights

Property IQ house sales data made available to the University of Auckland

Main Results

Dependent Variable: In Residual Land Value

5	Aggregate	Catchments
Suburb	0.3924*** (0.0164)	
0-400m		0.3949*** (0.4081)
400-800m		0.4081*** (0.0423)
800-1600m		0.3720*** (0.0261)
Land Area	0.7754*** (0.1738)	0.7329*** (0.1772)
Floor Area	0.0051*** (0.0002)	0.0051*** (0.0002)
Vacant Land	1.0489*** (0.0547)	1.0047*** (0.0557)
Multiple Units	-0.1206*** (0.0313)	- 0.1463*** (0.0313)
Building Age	0.0108*** (0.0004)	0.0109*** (0.0004)
Water View	0.2705*** (0.0445)	0.2405*** (0.0446)
Observations	3686	3686
R-Squared	0.414: 0.444: 0.435	0.315: 0.465: 0.429

Robustness to Missing Data

Dependent Variable: In Residual Land Value

	Preferred	Omitted Observations
Suburb	0.3924*** (0.0164)	0.4084*** (0.0189)
Land Area	0.7754*** (0.1738)	0.4309* (0.1818)
Floor Area	0.0051*** (0.0002)	0.0043*** (0.0002)
Vacant Land	1.0489*** (0.0547)	0.9054*** (0.0540)
Multiple Units	-0.1206*** (0.0313)	-0.1781*** (0.0322)
Building Age	0.0108*** (0.0004)	0.0103*** (0.0004)
Water View	0.2705*** (0.0445)	0.2601*** (0.0467)
Houses in Suburb	898	568
Observations	3686	2598
R-Squared	0.414; 0.444; 0.435	0.443; 0.423; 0.417

- * = significant at 5% level
- ** = significant at 1% level
- *** = significant at 0.1% level

Sensitivity to Distance Decay

Dependent Variable: In Residual Land Value

	Preferred	Omitted Observations
Suburb	0.3924*** (0.0164)	0.3573*** (0.0276)
Land Area	0.7754*** (0.1738)	0.6506** (0.1871)
Floor Area	0.0051*** (0.0002)	0.0041 *** (0.0002)
Vacant Land	1.0489*** (0.0547)	0.9130 *** (0.0810)
Multiple Units	-0.1206*** (0.0313)	-0.1250*** (0.0338)
Building Age	0.0108*** (0.0004)	0.0067*** (0.0007)
Water View	0.2705 *** (0.0445)	0.1865** (0.0611)
Houses in Suburb	898	304
Observations	3686	1508
R-Squared	0.414; 0.444; 0.435	0.396; 0.313; 0.317

- * = significant at 5% level
- ** = significant at 1% level
- *** = significant at 0.1% level

Caveats and Limitations

- Small sample size
- Omitted variable bias
- Missing interaction terms
- No long-term trend
- Staged operations on network
- Log-log specification sensitive to missing data for some variables
- Unexpected improvement and land effects

Conclusions and Next Steps

Conclusions:

- Significant uplift effect (scale to be confirmed)
- Incremental upgrade as important as new infrastructure
- People value improved services
- Rapid ex-post appraisal, without using GIS tools, appears feasible

Next steps:

- Estimate full model from 2006 capturing;
 - Announcement of electrification
 - Contract award
 - Early works
 - Other network upgrades
- Reconfirm research conclusions and compare results with prior studies

