Update on Improving Monitoring of Traffic-Related Air Pollution

Dr Ian Longley

Traffic-Related Air Pollution (TRAP) is a complex mixture

We use NO₂ as a common PROXY measure

NO₂ UFP NO VOCs soot VOCs NO_2 NO_2 UFP NO CO VOCs soot soot NO_2 NO_2 UFP UFP soot NO UFP VOCs NO_2

<u>Why</u> do we monitor? Standards and Guidelines relevant to TRAP

Pollutant	Averaging time		Where exceeded?
NO ₂	Annual mean	WHO Guideline	Busy roads in urban centres
NO ₂	Hourly mean	National Environmental Standard	Rare – busiest roads
СО	8-hr mean	National Environmental Standard	no exceedences recorded in 2 decades

Air pollution a cause of UK girl's death, finds global landmark ruling

By Emma Reynolds, CNN

() Updated 1813 GMT (0213 HKT) December 16, 2020

Coroner: Ella Kissi-Debrah died as a result of asthma worsened by exposure to excessive air pollution.

London (CNN) — A 9-year-old girl who died after an asthma attack is thought to be the first person in the world to have air pollution listed as a cause of death in a landmark coroner's ruling.

<u>Why ELSE</u> should we monitor?

How do we monitor?

- NO₂
- Monthly data
- 100+ locations (Waka Kotahi)
- WHO Guideline
- Trends and spatial patterns

- NO_2 , NO_x , CO and PM
- Hourly data
- <10 locations (Regional Councils)
- National Environmental Standards
- Worst in morning under light winds

Research questions

- Are these sites representative? (of what?)
- Can we measure more stuff more often in more places?

TRAP monitoring relies on a few sites whose representativeness is assumed, or deliberately unrepresentative (peak) sites

(NZTA) National Monitoring Network (NO2)

Monitoring and modelling has revealed TRAP has strong gradients and local hot-spots

(NZTA) National Monitoring Network (NO2)

The more roadside/hot-spot sites are monitored, the more biased the data

ihoro Nukurano

■ Auckland ■ Christchurch ■ Hamilton ■ Wellington ■ Dunedin

Research goals

- Build approach to
- 1. Locate and verify representative sites
- 2. Quantify and predict local "hot-spot" increments

Zones and site representativeness

ports

Traffic dominates Dispersion and emissions "normal" (hence modellable)

Concentrations are locally ELEVATED because dispersion and/or emissions are LOCALLY atypical or non-traffic sources significant

Creating a representative monitoring network

- Define "airsheds" within which concentrations are correlated in long-term
- Minimum one sites per zone per airshed

Building Indicators

- Pool data for each zone for each airshed
- 3-year rolling-average to indicate long-term trend

IIWA ro Nukurangi

Climate, F

Climate, Freshwat

IIWA ro Nukurangi

Measure locally-impacted zone

IIWA ro Nukurangi

Climate, F

Impact of micro-scale topography

Anticipated Outcomes

- Representative monitoring network, data and indicators for Tauranga and Christchurch
- Method that can be reproduced anywhere
- Highly detailed spatial models
- Improved understanding of impacts of urban design features on TRAP

Traffic-Related Air Pollution (TRAP) is a complex mixture

We use NO₂ as a common PROXY measure

NO₂ UFP NO VOCs soot VOCs NO_2 NO_2 UFP NO CO VOCs soot soot NO_2 NO_2 UFP UFP soot NO UFP VOCs NO_2

Tunnel setup

Waterview Tunnel Measurements – Dec 2020 – May 2021

Instrument details

- **ES642**: On loan from Mote. This device was setup with a PM2.5 inlet and with a logging interval of 1 minute. Data retrieved through Mote's platform.
- **NOx**: A API 200A NOx analyzer. Data was captured directly, once a minute, from the instrument through the RS-232 port.
- **BAM**: Thermo-Fisher FH62C14. **PM2.5** inlet and logged directly to a local computer every minute.
- Vaisala AQT420: On loan from Auckland Council. PM2.5, O3, NO2, SO2, CO, PM10, temperature, relative humidity and ambient pressure. It logging to a computer once a minute.
- SPEC NO2: Two SPEC DGS-NO2 sensors were connected directly to the logging computer and recorded data every 5 seconds.

Data summaries

Waterview Tunnel Measurements – Dec 2020 – May 2021

So?

- No significant degradation of performance of low(er) cost sensors over time
- NO2 sensors (Vaisala and SPEC) overestimate NO2 concentrations by a factor of 3.5 BUT that difference is stable.
- Vaisala's PM2.5 sensor surprisingly underperforms ODIN and ES642 even though they're all optical sensors.

Next steps

- Why do low-cost NO₂ sensors over-read?
- Error analysis
- Long-term performance and maintenance
- Electronic diffusion tubes
- Ambient trials (in planning stage):
 - Auckland motorways
 - Auckland street canyon

Postscript – what about carbon?

- Carbon dioxide testing soon
- Carbon monoxide Vaisala AQ420
- Black carbon difficult, but working on it
- Waterview Tunnel is perfect long-term carbon monitoring site

Acknowledgements

• This work in this presentation was funded by Waka Kotahi and NIWA

