# Quantifying the potential of active transport for health

Dr Anja Mizdrak anja.mizdrak@otago.ac.nz

Burden of Disease Epidemiology, Equity and Cost-Effectiveness Programme





#### Background

- High car dependency
- Low physical activity
- High transport-related GHG emissions
- Reducing car use and increasing active transport shown to improve health from city-level to internationally





#### **Modelling health impacts**

• Common metric:

Quality Adjusted Life Year (QALY)

Longitudinal

• Necessity of comparison





#### Aims

- To estimate the health impact (in QALYs) of switching short trips to walking and cycling
- To estimate health system costs associated with modelled changes in transport patterns
- To estimate change in transport-related carbon emissions associated with changes in transport patterns





# Model Structure







#### 'There-and-back'







#### **Physical activity increases**







# Proportion of trips by mode

|               | Baseline | Walking scenario* | Walking and cycling<br>scenario* |
|---------------|----------|-------------------|----------------------------------|
| Pedestrian    | 16       | 19                | 19                               |
| Cyclist       | 1        | 1                 | 16                               |
| Motorbike     | 1        | 1                 | 1                                |
| Motor vehicle | 82       | 79                | 64                               |

#### \*100% uptake





#### **Health impact**







# **Comparison of health gains**



(b) Under 5km switched to walking and cycling (100% uptake)

UK salt reduction package

Tobacco-free generation

(b) Under 5km switched to walking and cycling (50% uptake)

Tobacco tax increases (annual 10% increase)

(b) Under 5km switched to walking and cycling (25% uptake)

UK salt reduction mass media campaign

(a) Under 1km to walking (100% uptake)

(a) Under 1km to walking (50% uptake)

Reducing tobacco outlets by 95%

(a) Under 1km to walking (25% uptake)





#### **Risk factor contribution**







# **Timing of health gains**







#### Health system cost savings







#### **Emissions impacts**

|                            |                      | Change in emissions (kgCO <sub>2</sub> e) |  |  |
|----------------------------|----------------------|-------------------------------------------|--|--|
| Scenarios                  | Percentage<br>uptake | Vehicular                                 |  |  |
| (a) switching              | 100%                 | -22.5 (-32.0 to -13.5)                    |  |  |
| car trips                  | 50%                  | -11.3 (-15.8 to -6.9)                     |  |  |
| ≤1km to<br>walking         | 25%                  | -5.6 (-7.8 to -3.4)                       |  |  |
| (b) switching<br>car trips | 100%                 | -436.4 (-607.2 to -<br>267.6)             |  |  |
| ≤1km to<br>walking and     | 50%                  | -218.0 (-302.5 to -<br>136.0)             |  |  |
| to cycling                 | 25%                  | -108.1 (-153.3 to -<br>65.7)              |  |  |





## **Emissions impacts**

|                                                                                   |                      | Change in emissions (kgCO <sub>2</sub> e) |                        |                         |  |
|-----------------------------------------------------------------------------------|----------------------|-------------------------------------------|------------------------|-------------------------|--|
| Scenarios                                                                         | Percentage<br>uptake | Vehicular                                 | Dietary                | Total                   |  |
| (a) switching<br>car trips<br>≤1km to<br>walking                                  | 100%                 | -22.5 (-32.0 to -13.5)                    | 24.8 (15.4 to 34.5)    | 2.4 (-11.1 to 15.3)     |  |
|                                                                                   | 50%                  | -11.3 (-15.8 to -6.9)                     | 12.4 (7.6 to 17.5)     | 1.1 (-5.3 to 7.6)       |  |
|                                                                                   | 25%                  | -5.6 (-7.8 to -3.4)                       | 6.1 (3.7 to 8.5)       | 0.5 (-2.7 to 3.8)       |  |
| (b) switching<br>car trips<br>≤1km to<br>walking and<br>those 1-5km<br>to cycling | 100%                 | -436.4 (-607.2 to -<br>267.6)             | 241.3 (156.6 to 330.2) | -194.4 (-377.2 to -3.1) |  |
|                                                                                   | 50%                  | -218.0 (-302.5 to -<br>136.0)             | 121.3 (79.0 to 163.8)  | -97.5 (-192.5 to -2.7)  |  |
|                                                                                   | 25%                  | -108.1 (-153.3 to -<br>65.7)              | 60.3 (39.6 to 81.8)    | -47.2 (-96.9 to -1.9)   |  |





#### **Strengths and limitations**

- Value of comparison
- Individual level trip switches
- Active transport  $\rightarrow$  BMI association





#### **Obesity impact?**



THIS ONE RUNS ON FAT AND SAVES YOU MONEY



#### THIS ONE RUNS ON MONEY AND MAKES YOU FAT





# **Policy options**

- Reduce speeds
- Cycle lanes
- Urban space allocation
- Enforcement







#### **Urban space allocation**







#### **Urban space allocation**







#### Next steps?

- Total burden of transport
- Zero Carbon Act
- Dissaggregation
- Intersection with other health issues





# Summary

- Switching short trips to walking and cycling would have positive health impacts, reduce healthcare costs, and may also reduce greenhouse gas emissions
- Modelling allows us to compare the health gains from different policy options





# Thank you!

Funding: Health Research Council

#### Citation:

Mizdrak A, Blakely T, Cleghorn CL, Cobiac LJ (2019) Potential of active transport to improve health, reduce healthcare costs, and reduce greenhouse gas emissions: A modelling study. PLoS ONE 14(7): e0219316.

https://doi.org/10.1371/journal.pone.0219316



Email: anja.mizdrak@otago.ac.nz



