Catastrophe!

Why we should care about the possibility of rare but catastrophic transport incidents

Summary

- 1. The rail industry and the research project
- 2. What is our risk tolerance?
- 3. Discussion The Value of Life
- 4. The SPACE Model
- 5. How safe do we need to be?
- 6. Discussion Grossly Disproportionate
- 7. Wrap-up

Background - The New Zealand rail industry

98 operators	31mil passenger journeys	16mil tonnes of freight	4200 km network	6000 workers
Huge range of size and capability of rail operators doing a range of activities	Wellington & Auckland metro	Critical infrastructure for NZ to move goods	3100 signals, 1600 bridges, 70km of tunnels, 3000 level crossings	Maintenance crews, train staff, corporate support, volunteers
	Cablecars & Trams			
	Tourist & long distance service			
	Heritage			

Background - The Rail Safety Regulator

- The Rail Safety Regulator is part of the Transport Agency
- We oversee the safety of all rail operators in NZ
 - Rail operators remain **accountable** for safety & managing risk
- Licensing, auditing, education, investigation & compliance

ONAVIGA

Background – Why the focus on risk?

- Risk management is a key activity in the rail sector
 - Trains are big and hard. People aren't.
 - Potential for multi-fatality accidents
- Rail companies must manage their own risks
 - "Those creating the hazard are responsible for managing it"
- Risk management is evolving in New Zealand
 - Increasingly complicated activities
 - "Everyone comes home healthy and safe"

Background – The research project

Framework for review and prioritisation of rail safety risks

- Agency-funded research project to build risk capability across the sector ٠
 - What is done well, what isn't? •
 - What risks should we focus on?
- Who was involved?
 - Carried out by Navigatus Consulting •
 - Sector involvement rail companies, TAIC, Worksafe, union
- How was it done?
 - Literature reviews

- Surveys of industry participants
- - Observations of practices Analysis of national & overseas data

These are the findings of a research project – not the opinion or • responsibility of the NZ Transport Agency.

What is our risk tolerance?

- Risk management is not risk elimination
- You can't be absolutely "safe" risk is a consequence of activity

Our tolerance - exposure

Who is exposed to the risk?

Tolerance \propto control the person has over it

Do we fear bigger accidents?

Considered:

- Public outrage in large disasters
- Countries that adjust risk standard for catastrophic accidents

$Tolerance \propto Consequence$

Our tolerance - societal concerns

Does the type of harm matter?

Φ

OO

Higher toleran

Time to chat

The Value of a Statistical Life

Break into groups of 5-6 and discuss for 10 minutes:

- Who uses VSL?
- How do you use it?
- How do you account for risk aversion in your use?

Value of Life Saved - Valuation Methods

Value of Life Saved

Examples:

Edwards vs National Coal Board (1949)

• Compensation of £984 (1949)

£32k (2016)

\$70k (NZD 2016)

UK Court Compensation (1952–2002)

- Average compensation of £157k \$330k (NZD)
- All were less than
 £200k
 \$420k (NZD)
- HSE VSL at the time was $f_{1m} \approx 2002$)
- VSL was 5 times the compensation amount

Value of Life Saved

The current VSL is derived from a 1991 study by Miller and Guria asking approx. 600 people what they would be willing to pay for various improvements in road safety.

• This implicitly includes a degree of risk aversion

Estimating fatality risks in New Zealand rail Kevin Oldham, Navigatus

Contents

- Recent incidents
- The challenge
- Model overview
- Method
- Results
- Conclusions and discussion

Recent Incidents

The Challenge

The problem of frequency:

- small rail industry
- relatively low incident counts
- very few higher consequence events.

Record keeping historically patchy.

5 years of recent improved record.

The Challenge

Under these circumstances how can we develop a best estimate of the safety risks across both common and rare event types?

SPACE Risk Model

- This required a hybrid approach, drawing on New Zealand and international data, resulting in the SPACE model.
 - Safety Performance And Casualty Estimates

SPACE Methodology

* Average expected fatalities not estimated for passenger tunnel fire risk. This is a priority risk due to the maximum credible number of fatalities

SPACE Methodology

* Average expected fatalities not estimated for passenger tunnel fire risk. This is a priority risk due to the maximum credible number of fatalities

Tangiwai Disaster 1953

Source: Archives New Zealand

SPACE Methodology

* Average expected fatalities not estimated for passenger tunnel fire risk. This is a priority risk due to the maximum credible number of fatalities

SPACE Methodology

* Average expected fatalities not estimated for passenger tunnel fire risk. This is a priority risk due to the maximum credible number of fatalities

Sample of Raw results

Туре	Operations	Average Expected Fatalities (10-3 pa)	Max Credible Fatalities from Single Event	Confidence Class
Collision (level crossing)				
Pedestrian	All	1200	1	А
Bus	All	75	30	С
Heavy Vehicle	Mainline	343	15	А
	Heritage	76	15	D

Method 1: treating every circumstance equally.

Method 2 : weight assessment in an effort to reflect broad societal values on risk acceptance.

Example: Influence of Volition

Reseach by Covey et al (2008) found that:

Public would reduce willingness to spend on preventing a statistical falatity if victims are behaving iresponsibly: e.g.

- adult trespassers engaged in acts of vandalism,
- adult car drivers behaving irresponsibly at level crossings,
- adult drunks falling from platforms
- child trespassers engaged in acts of vandalism,
- suicides.

The Value of Preventing a Statistical Fatality (VPSF) ratios relative to the baseline case around 40% of the baseline figure.

Weighting: Party (Volition)

- 1 Unauthorised Member of Public (UMOP)
- 2 Level Crossing User
- 3 Railway Worker
- 4 Passenger
- 5 Member of Public (Bystander)

Weighting: Control

- 1 Unauthorised Access
- 2 Level Crossings
- 3 Natural Events
- 4 Technical risks

Result: Weighted Rankings

Ran	Top risks ordered by Average Expected	Top risks in party weighted	Top risks in party and outcome]
k	Fatalities / Year	order	control weighted order	
1	Collision with unauthorised member of public	Collision with unauthorised member of public	Tsunami	
2	Level crossing collision with light vehicle	Tsunami	Collision with unauthorised member of public	
3	Level crossing collision with pedestrian	Level crossing collision with light vehicle	Level crossing collision with light vehicle	sks
4	Tsunami	Level crossing collision with pedestrian	Level crossing collision with pedestrian	Priority Risks
5	Mainline passenger level crossing collision with heavy vehicle	Passenger train collision with civil works failure	Passenger train collision with civil works failure	Pric
6	Passenger train collision with civil works failure	Mainline passenger derailment	Mainline passenger derailment	
7	Collision with Infrastructure Maintenance Worker	Tourist and heritage derailment	Tourist and heritage derailment	
8	Shunting incident	Mainline passenger level crossing collision with heavy vehicle	Collision with infrastructure maintenance worker	
9	Mainline passenger derailment	Collision with infrastructure maintenance worker	Shunting incident	
10	Tourist and heritage derailment	Shunting incident	Fire at station]
11	UMOP electric shock	Fire at station	Freight derailment]
12	Fire at station	Freight derailment	Mainline passenger level crossing collision with heavy vehicle	
13	Freight derailment	Level crossing collision with bus	Collision between trains involving at least one passenger train	
14	Tourist and heritage level crossing collision with heavy vehicle	Collision between trains involving at least one passenger train	Level crossing collision with bus	
			Tourist and haritage lovel proceing	
Interesting Outcome

- Tsunami risk was the highest ranked risk.
- Emerging understanding of tsunami risk in New Zealand and internationally.
- The biggest ever railway disaster arose in Sri Lanka during the Boxing Day tsunami of 2004.
- This wouldn't have been assessed under conventional historical incident analysis, as no rail fatalities have been observed due to tsunamis in New Zealand history.

Consistency and Reliability

- How can you have consistent and reliable results when the method varies?
 - Researcher degrees of freedom
 - Researcher choices can greatly affect the outcomes
 - Judgement
 - Fit for purpose
 - Peer review
- Best available estimate of safety risk given current state of knowledge
 MIT IEEMID THIS LINE UNITIL TRANSACTION FILSE

Discussion

- Intent is to draw on best available data and apply most approriate risk assessment approach.
- Builds a transparent and rational overview.
- Peer review and industry working group oversight.
- Building consensus on main risks.

Findings

- Hybrid approach is useful to build a system overview where incidents occur at widely different frequencies.
- Resarcher degrees of freedom – results may not be replicable.
- Needs to be used with care and with understanding of limitations.

How safe - What is the current standard?

ONAVIGATUS

How safe - What should it be?

How safe - And where should we be heading?

ONAVIGATUS

The influence of SFAIRP

Tolerance is the upper ceiling

SFAIRP - there is no longer an <u>acceptable</u> level of risk

- Continually strive to reduce risk
 - as better safety controls become available, risk will decrease
 - as catastrophic risks are better understood, improved focus

Time to chat

Q. What does "Grossly disproportionate" mean? How can it be assessed?

Break into groups of 5-6 and discuss for 10 minutes:

- Is it being applied where?
- How disproportionate?
- Can it be used with the VSL?

Grossly disproportionate

Edwards vs National Coal Board, 1949

Reasonably practicable is a narrower term than 'physically possible' ...

...if it be shown that there is a **great disproportion** between [the quantum of risk and the sacrifice to avert it] – the risk being insignificant in relation to the sacrifice – the person upon whom the obligation is imposed discharges the onus which is upon him.

Wrap-up - Questions and Comments?

