

Domestic Transport Costs and Charges

Information session – Social, Health and Environmental costs

25 August 2022

Disclaimer

All reasonable endeavours are made to ensure the accuracy of the information in the draft report. However, the information is provided without warranties of any kind including accuracy, completeness, timeliness or fitness for any particular purpose.

Te Manatū Waka the Ministry of Transport excludes liability for any loss, damage or expense, direct or indirect, and however caused, whether through negligence or otherwise, resulting from any person's or organisation's use of, or reliance on, the information provided.

Results included in this file may be subject to revision as the project team finalises the estimates for the DTCC Final Report.

Air quality and greenhouse gas emissions

Gerda Kuschel - Emission Impossible

Terminology

Air quality (harmful) emissions

Carbon monoxide (CO) Volatile organic compounds (VOCs) Oxides of nitrogen (NO_x) Sulphur dioxide (SO₂)

Particulate matter <10µm (**PM**₁₀)

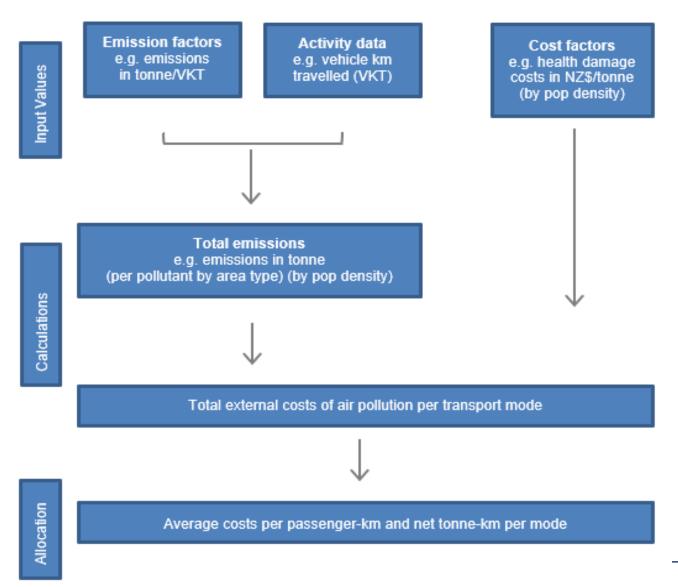
Impact locally so exposure (location) matters

Greenhouse gas emissions

Carbon dioxide (CO_2) Methane (CH_4) Nitrous oxide $(N_2O)^*$

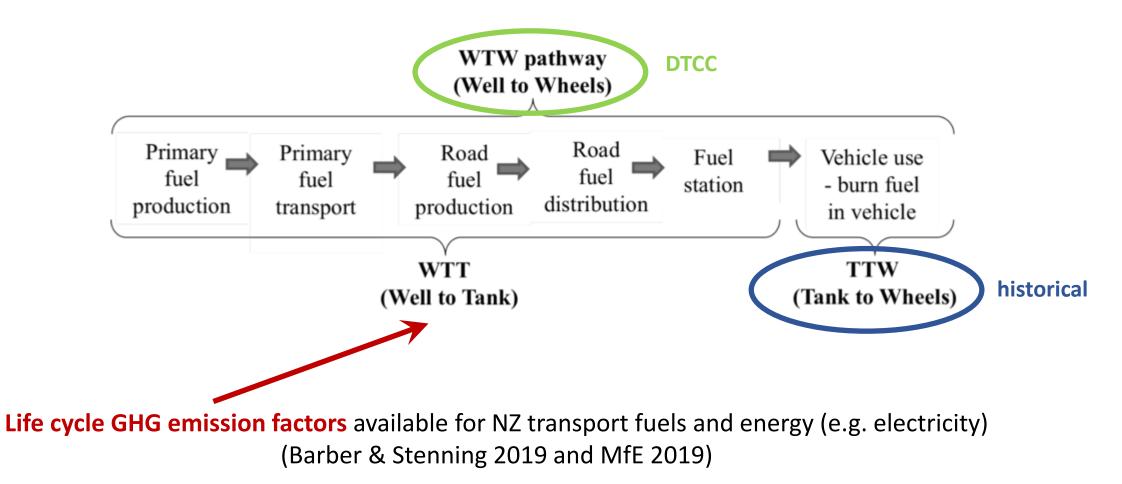
Impact globally and usually converted to CO₂e

* <u>Not</u> to be confused with nitrogen dioxide (NO_2) which is a harmful gas included in NO_X


Figure 2. 1 Generic methodology for calculating total and average costs of air pollution (Essen et al 2019)

Assessing impact of transportrelated air emissions

Approach adopted for estimating emissions can be:


- Top-down (e.g. using national data)
- Bottom up (e.g. using local data)

Approach actually taken depends on data availability for each mode

Assessing upstream emissions

Damage costs

Urban areas typically have estimated resident populations > 1,000 people and population densities > 400 residents or 200 address points per square kilometre.

a Table 2.1 Damage costs for use in project evaluations in \$/tonne in the MBCM

PM10 \$460,012 2016 NOx \$16,347 2016 VOC \$1,310 2016 COze \$65.58 2016
VOC \$1,310 2016
CO.e \$65.58 2016
CO \$4.13 2016

DTCC costs currently based on earlier HAPINZ

- Updated for 2019
- Split by urban and rural (different exposure)
- Added in SO₂
- Revised CO₂e based on Treasury CBAx

Table 2. 2 Revised damage costs used in the DTCC study in \$/tonne in June 2019 prices

Pollutant	Costs in NZ\$/tonne Urban	Costs in NZ\$/tonne Rural	Value base date (at end June)
PM10	\$503,346	\$38,480	2019
SO2	\$36,491	\$2,790	2019
NOx	\$17,887	\$1,367	2019
VOC	\$1,433	\$110	2019
CO₂e	\$88	\$88	2019
со	\$4.52	\$0.35	2019

Note: All costs are based on a road safety VoSL of \$4.530 million (NZ\$) at end June 2019 by multiplying the 2016 damage costs (Table 2.1) by 1.094 (=4.530/4.140) to derive these 2019 urban values.

<u>Latest</u> HAPINZ has <u>much</u> higher damage costs for NO_X but yet to be incorporated

Road transport

- Fleet profile from VFEM (as %VKT)
- Emission factors from VEPM6.1 (speed-based)
- VKT data by local roads vs SH, heavy vs light, sealed vs unsealed
- Typical EV energy consumptions
- Occupancy by NZ Household Travel Survey
- Freight from MoT plus WiM sites

All road transport, including freight and longdistance passenger buses <u>Excluding</u> urban PT and school buses

Bottom up approach

E = EF x VKT

Equation 3.1

Where:

- E = emission of a pollutant (g/yr)
- EF = emission factor (EF) of the pollutant by speed for vehicle type (g/km)

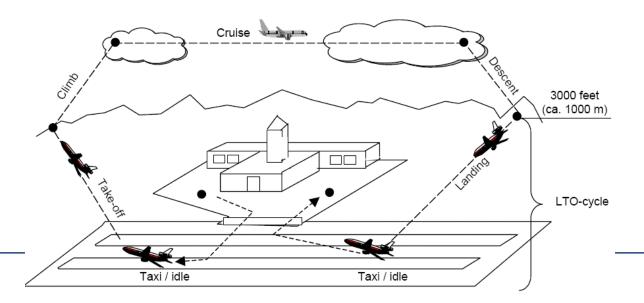
VKT = total vehicle kilometres travelled (VKT) by vehicle type on the network (km/yr).

Emissions were estimated bottom-up, using speed and VKT data for regions across New Zealand as well as urban/rural splits. Estimates were then aggregated to provide national emissions.

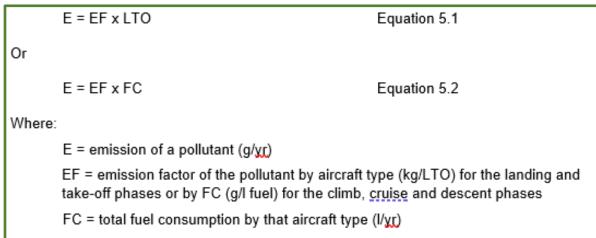
- Fleet profile based on fuel type only
- Emission factors from Tier 1 EMEP/EEA (fuel-based)
- Freight locomotive energy use, NTK from KiwiRail
- Long-distance passenger rail data from KiwiRail

All rail transport, including freight and long-distance passenger services <u>Excluding</u> urban PT rail

Top-down using fuel/energy consumption


E = EF x FC Equation 4.1 Where: E = emission of a pollutant (g/yr) EF = emission factor (EF) of the pollutant by fuel type (kg/tonne fuel) FC = total fuel consumption by that vehicle type on the network (t/yr).

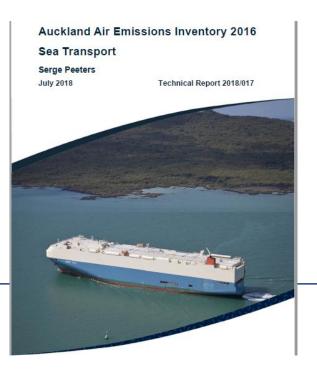
Emissions were estimated top-down, using fuel consumption data for New Zealand and split for urban/rural accordingly.


Domestic aviation

- Fleet profile based on AirNZ domestic fleet (3 types)
- LTO factors from Tier 1 EMEP/EEA (LTO-based)
- CCD factors from fuel use less LTO (GHG only)
- Movements (main airports) from Airways Ltd
- Passenger #s from Air NZ

All domestic passenger travel on scheduled services only <u>Excluding</u> domestic air freight

Combination of top-down and bottom up



LTO = number of landing and take-off movements for the type of aircraft per year.

Coastal shipping

- Fleet profile based on NFDS categories (3 types)
- At berth factors from Akl Emis Inv (visit-based)
- At sea factors from fuel use less at berth (GHG only)
- Port visits from NFDS data plus Rockpoint
- Freight volumes from Rockpoint

es)			Coastal freight services only				
d)			Excluding passenger ferries and cruise ships				
G	only)						
			Combination of top-down and bottom up				
	E = EF x PV Equation 6.1						
	Or						
		E = E	EF x FC Equation 6.2				
	Where:						
		E = emission of a pollutant (g/ɣɾ)					
			= emission factor of the pollutant by vessel type (kg/PV) for the at-berth phase or FC (g/litre fuel) for the at-sea phase				
		FC =	total fuel consumption by that vessel type (l/ɣr)				
		PV =	port visits for the type of vessel per year.				

Public transport

- Bus fleet profiles from Councils (urban) & MoEd (rural)
- Urban rail fleet profile from Akl & Wgtn councils
- Urban ferry fleet profile from AT
- Emission factors from VEPM6.1 or EEA/EMEP (fuel)
- Passenger #s from Waka Kotahi plus MoEd

	Urban buses, urban rail and urban ferries				
	Including school bu	ses			
	Bottom up approad	h			
	E = EF x VKT	Equation 7.1	٦		
Or					
	E = EF x FC	Equation 7.2			
Whe	re:				
	E = emission of a pollutant (g/ɣɾ)				
	EF = emission factor of the pollutant by speed for buses (g/km) or fuel type for rail and ferries (g/litre fuel)				
	VKT = total vehicle kilometres tra network (km/ɣɾ)	velled by that bus type on the public transport			
	FC = total fuel consumption by th	at vehicle type on the public transport network (I/ɣɾ)			

Alternative modes

- Relative costs only (not total due to limited data)
- E-cycling energy use from Wgtn E-Bike website
- Ride-hailing assumed hybrid (100% dead running)
- Scooter data from Electric Scooter Guide & o'seas
- Emission factors (ride-hailing) from VEPM6.1

Walking, cycling, e-cycling, ride-hailing, micro-mobility (private+rental e-scooters) <u>Assuming</u> urban travel only

	E = EF x VKT	Equation 7.1			
Or					
	E = EF x FC	Equation 7.2			
Where:					
	E = emission of a pollutant (g/ɣʃ)				
	EF = emission factor of the pollutant by speed for buses (g/km) or fuel type for rail and ferries (g/litre fuel)				
	VKT = total vehicle kilometres travelled by that bus type on the public transport network (km/yr)				
	FC = total fuel consumption by that vehicle type	on the public transport network (l/ɣr).			

- Road transport the major contributor
- Urban/rural costs dominance depends on whether AQ or GHG

Table 9. 1 Total costs of domestic transport air quality impacts in New Zealand in 2018/19

Mode	Urban costs (\$M)	Rural costs (\$M)	Total costs, \$M (June 2019 prices)
Road transport	\$897.6	\$155.3	\$1,052.9
Rail	\$15.0	\$4.2	\$19.3
Domestic aviation	\$18.5	\$0.4	\$18.9
Coastal shipping	\$47.2	\$0.4	\$47.6
Public transport	\$66.7	\$0.8	\$67.5
All modes	\$1,045 M	\$161 M	\$1,206 M

Table 9. 2 Total costs of domestic transport greenhouse gas impacts in New Zealand in 2018/19

Mode	Urban costs (\$M)	Rural costs (\$M)	Total costs, \$M (June 2019 prices)
Road transport	\$523	\$927.3	\$1,450.3
Rail	\$2.8	\$10.6	\$13.3
Domestic aviation	\$22.4	\$81.0	\$103.4
Coastal shipping	\$3.1	\$80.7	\$83.7
Public transport	\$20.9	\$3.2	\$24.2
All modes	\$572 M	\$1,103 M	\$1,675 M

RAFT RESULTS Normalised costs - passenger

• Rail best per PK

÷

• Urban ferry **worst** per PK

Table 9. 3 Normalised costs of air quality impacts for domestic passenger transport vehicles in

Image: Table 9. 3 Normalised costs of air quality impacts for domestic passenger transport vehicles in

Image: Table 9. 3 Normalised costs of air quality impacts for domestic passenger transport vehicles in

Image: Table 9. 3 Normalised costs of air quality impacts for domestic passenger transport vehicles in

Image: Table 9. 3 Normalised costs of air quality impacts for domestic passenger transport vehicles in

Image: Table 9. 3 Normalised costs of air quality impacts for domestic passenger transport vehicles in

Image: Table 9. 3 Normalised costs of air quality impacts for domestic passenger transport vehicles in

Image: Table 9. 3 Normalised costs of air quality impacts for domestic passenger transport vehicles in

Image: Table 9. 3 Normalised costs of air quality impacts for domestic passenger transport vehicles in

Image: Table 9. 3 Normalised costs of air quality impacts for domestic passenger transport vehicles in

Image: Table 9. 3 Normalised costs of air quality impacts for domestic passenger transport vehicles in

Image: Table 9. 3 Normalised costs of air quality impacts for domestic passenger transport vehicles in

Image: Table 9. 3 Normalised costs of air quality impacts for domestic passenger transport vehicles in

Image: Table 9. 3 Normalised costs of air quality impacts for domestic passenger transport vehicles in

Image: Table 9. 3 Normalised costs of air quality impacts for domestic passenger transport vehicles in</

Passenger transport	Urt	an	Ru	ral	National	average
category	c/VKT	c/PK	c/VKT	c/PK	c/VKT	c/PK
Passenger car	2.7	1.7	0.3	0.2	1.3	0.8
Coach	26.6	2.0	2.1	0.2	7.6	0.6
Other bus	21.9	1.6	1.7	0.1	6.3	0.5
Motorcycle	5.8	5.8	0.5	0.5	2.5	2.5
Long-distance rail	179.8	0.9	13.7	0.1	43.6	0.2
Domestic aviation	n/a	0.3	n/a	0.02	n/a	0.3
Urban bus	38.6	5.0	-	-	38.6	5.0
School bus	-	-	1.7	0.2	1.7	0.2
Urban rail	13.1	0.2	-	-	13.1	0.2
Urban ferry	884.4	15.7	-	-	884.4	15.7

Note: Emissions and costs for urban bus, urban rail and urban ferry were only assigned to urban, whereas emissions for rural school buses were only assigned to rural. VKT data for aviation were not available.

Table 9. 4 Normalised costs of greenhouse gas impacts for domestic passenger transport vehicles in New Zealand in 2018/19

Passenger transport	Urban		Rural		National a	verage
category	c/VKT	c/PK	c/VKT	c/PK	c/VKT	c/PK
Passenger car	2.4	1.5	2.4	1.5	2.4	1.5
Coach	9.4	0.7	9.4	0.7	9.4	0.7
Other bus	8.5	0.6	8.5	0.6	8.5	0.6
Motorcycle	0.9	0.9	0.9	0.9	0.9	0.9
Long-distance rail	28.6	0.1	28.6	0.1	28.6	0.1
Domestic aviation	n/a	0.4	n/a	5.1	n/a	1.4
Urban bus	12.2	1.6	-	-	12.2	1.6
School bus	-	-	8.4	1.0	8.4	1.0
Urban rail	12.3	0.2	-	-	12.3	0.2
Urban ferry	232.0	4.1	-	-	232.0	4.1

Note: Emissions and costs for urban bus, urban rail and urban ferry were only assigned to urban, whereas emissions for rural school buses were only assigned to rural. VKT data for aviation were not available.

ORAFT RESULTS Normalised costs - freight

- Rail **best** per NTK
- Light commercial vehicles **worst** per NTK

Table 9. 5 Normalised costs of air quality impacts for domestic freight transport vehicles in New Zealand in 2018/19

	Freight transport	Urban		Rural		National average	
	category	c/VKT	c/NTK	c/VKT	c/NTK	c/VKT	c/NTK
$\left(\right)$	LCV	9.0	18.0	0.8	1.6	4.0	8.1
	MCV	16.4	6.5	1.3	0.5	4.7	1.9
	HCV	27.0	2.6	2.1	0.2	7.7	0.7
	Electric locomotive	n/a	0.0	n/a	0.0	n/a	0.0
	Diesel locomotive	n/a	2.3	n/a	0.1	n/a	0.5
	Coastal freighter	n/a	1.2	n/a	0.03	n/a	0.9

Note: Domestic air freight was not assessed. VKT data were not available for freight locomotives and coastal vessels.

Table 9. 6 Normalised costs of greenhouse gas impacts for domestic freight transport vehicles in New Zealand in 2018/19

	Freight transport	Urban		Rural		National average	
	category	c/VKT	c/NTK	c/VKT	c/NTK	c/VKT	c/NTK
\langle	LCV	3.3	6.6	3.3	6.6	3.3	6.6
	MCV	5.4	2.2	5.4	2.2	5.4	2.2
	HCV	10.9	1.0	10.9	1.0	10.9	1.0
	Electric locomotive	n/a	0.1	n/a	0.1	n/a	0.1
	Diesel locomotive	n/a	0.4	n/a	0.3	n/a	0.4
	Coastal freighter	n/a	0.1	n/a	6.5	n/a	1.6

Note: Domestic air freight was not assessed. VKT data were not available for freight locomotives and coastal vessels.

URAFT RESULTS Normalised costs – alternative modes

 Relative to an "average" car in the fleet, walking and cycling best

Table 8. 5 Normalised greenhouse gas costs and net benefits (relative to an average passenger car) of different alternative modes in urban areas of New Zealand in 2018/19

Vehicle mode	Urban greenhous	e gas costs	Net benefits			
venicie mode	c/VKT	c/PK	c/VKT	c/PK		
Walking and cycling						
Walking	0	0	4.7	3.0		
Cycling	0	0	4.7	3.0		
E-cycling	0	0.01	4.7	3.0		
Ride hailing						
Hybrid <3.5t	2.2	1.0	2.5	2.0		
Petrol car <3.5t *	4.6	2.1	0.1	0.9		
Micro-mobility						
E-scooter (private)	0.02	0.02	4.7	3.0		
E-scooter (rental)	0.3	0.3	4.5	2.8		

Table 8. 4 Normalised air quality costs and net benefits (relative to an average passenger car) of different alternative modes in urban areas of New Zealand in 2018/19

Vehicle mode	Urban air quality costs		Net benefits	
	c/VKT	c/PK	c/VKT	c/PK
Walking and cycling				
Walking	0	0	2.7	1.8
Cycling	0	0	2.7	1.8
E-cycling	0	0	2.7	1.8
Ride hailing				
Hybrid <3.5t	1.3	1.2	1.4	0.6
Petrol car <3.5t *	2.0	1.8	0.8	0.0
Micro-mobility				
E-scooter (private)	0	0	2.7	1.8
E-scooter (rental)	0.1	0.1	2.6	1.6

Note: The ride-hailing costs per PK include costs associated with 100% dead running.

Note: The ride-hailing costs per PK include costs associated with 100% dead running.

Recommendations for future work

- Improve road dust (sealed and unsealed) emission factors
- Obtain/record actual **loads** for commercial vehicles
- Refine **motorcycle exhaust** emission factors
- Improve resolution of **school bus** data (especially PK estimates
- Obtain/record better data on domestic shipping fuel use
- Update all costs with **HAPINZ 3.0** estimates (once decision on VoSL)

